5/4/3015
PHÁT MINH KHOA HỌC TỪ BẮT CHƯỚC THIÊN NHIÊN
I. BẮT CHƯỚC ĐỘNG VẬT
Trần-Đăng Hồng, PhD
Cơ thể động vật cũng như thực vật, qua tiến hóa hàng vạn năm để thích ứng với môi trường sống, đã phát triển những bộ phận hay cơ nguyên thích ứng thật hoàn hảo và tiết kiệm năng lượng nhất. Các nhà khoa học quan sát các hoạt động của sinh vật, nghiên cứu cách cấu tạo cơ thể chúng, để tìm hiểu và sau đó bắt chước chúng để phát minh, hay sáng chế áp dụng kỹ thuật.
1. LÀM SAO CON HÀU DÍNH CHẶT VÀO KHỐI ĐÁ TRƠN
Hình 1. Con hàu dính vào tấm kính
TS Wilker, nhà hóa học và khoa học vật liệu (material science) ở Purdue University (Indiana), trong dịp bơi lặn ngoài biển sâu, ngạc nhiên thấy làm sao con hàu (mussel) dính chặt được vào đá nhẵn trơn như ở tấm kính hình trên. Quan sát kỹ, ông thấy con hàu phóng ra một loại keo làm thành sợi dính chặt vào đá như dây neo của tàu (Hình 1). Trên thị trường có rất nhiều loại keo (glue) để hàn gắn vật bễ, nhưng chỉ áp dụng ở môi trường khô ráo, chứ không trong nước như con hàu. Ông cùng toán nghiên cứu chất keo do con hàu sản xuất thấy đó là một phân tử protein khác lạ gồm nhiều tyrosine amino acids bị biến thành 3,4-dihydroxyphenylalanine (DOPA) nhờ cộng thêm nhóm hydroxyl OH. Ngoài ra, còn có chất sắt Fe. Chính nhờ khám phá này, nhóm nghiên cứu của ông đã tổng hợp nhân tạo chất keo có cấu trúc tương tự như DOPA của con hàu để dùng làm keo dính mãnh liệt (super glue) hàn gắn trong môi trường có nước, như nối xương gảy trong cơ thể, hàn các mô tế bào, nối răng gảy, v.v. và áp dụng trong kỹ nghệ sửa chửa tàu ghe, v.v.
2. BẮT CHƯỚC HẢI SÂM (Đồn đột, sea cucumber)
Nhiều sinh vật trong biển có khả năng biến hình dạng để trốn kẻ thù. Chẳng hạn con hải sâm có thân mềm nhũn là thức ăn của nhiều loại cá hay sinh vật khác. Khi thấy bị đe dọa tính mạng trước kẻ thù ăn thịt mình, con hải sâm cuộn tròn, và biến thân thể mềm nhũn trở thành xơ cứng, không còn là con mồi hấp dẫn. Làm sao con hải sâm biến thân thể mềm nhũn thành xơ cứng trong nháy mắt, và khi hết bị đe dọa nó mềm nhũn trở lại? Nghiên cứu cơ thể cho thấy các cơ sợi cấu tạo bởi một loại protein đặc biệt kết hợp với hợp chất nhu mô mềm. Các cơ sợi này có khả năng biến đổi từ dạng mềm nhũn sang dạng xơ cứng tùy theo phản ứng thần kinh của hải sâm.
TS Jeffrey Capadona và cộng sự thuộc Case Western Reserve University cộng tác với US Department of Veterans Affairs Medical Center, cả hai cơ quan cùng ở Cleveland (Ohio), tin tưởng rằng đây là một vật liệu lý tưởng để làm vi điện cực (micro electrodes) trong phẫu thuật não bộ. Nhóm nghiên cứu này chú trọng đặt vào dây thần kinh não bộ một bộ phận có khả năng nhận cũng như truyền tín hiệu từ óc ra cơ quan hay truyền từ cơ quan vào óc, đặc biệt nhằm tái tạo hệ thần kinh cho người bị bị liệt (paralysis), bệnh mất trí nhớ Alzheimer hay đa-xơ-cứng (multiple sclerosis). Với phẫu thuật hiện tại, điện cực cứng khi đặt vào óc sẽ gây tác hại cho nhu mô màng óc và gây nhức nhối. Nếu có điện cực mềm nhũn và dễ uốn cong thì giải quyết được tác hại này, nhưng nếu điện cực mềm nhũn thì làm sao nhét vào tế bào neuron được. TS Capadona nói “Vi-điện-cực lý tưởng là phải cứng lúc ban đầu để dễ nhét vào dây thần kinh, nhưng sau đó phải mềm nhũn như dây thần kinh để tránh tác hại”. Cơ sợi của hải sâm là mẫu mực lý tưởng để chế tạo vi-điện-cực. TS Capadona và đồng nghiệp chế tạo cơ sợi nhân tạo gồm hợp chất cellulose thiên nhiên với polymer nhân tạo (polyvinyl acetate). Trong không khí khô, hợp chất này cứng chắc, nhưng khi nằm trong óc, nó hút nước, phồng nở và mềm nhưng vẫn chắc chắn.
Hiện nay, các thử nghiệm được thực hiện thành công trong não bộ chuột. Giai đoạn tới là thử nghiệm ở khỉ, cuối cùng mới thử nghiệm ở người.
3. BẮT CHƯỚC BÀN CHÂN CON CẮC KÈ
Làm sao con cắc kè (gecko), thằn lằn leo được trên vách thẳng đứng trơn trợt hay trần nhà mà không bị rơi xuống theo trọng lực. Các nhà sinh học biết rõ là bàn chân con vật này cấu tạo bởi một loạt sợi li ti như lông gọi là “setae”, giúp các nguyên tử lôi cuốn hút chặt nhau theo lực van der Waals, mảnh liệt hơn trọng lực.
Bàn chân cắc kè cấu tạo bởi hàng ngàn sợi lông Setae
Tuy nhiên, nhiều nhà khoa học từng bắt chước cấu tạo bàn chân của cắc kè để chế tạo setae nhân tạo nhưng không thành công mỹ mãn. Tại sao vậy?
TS Al Crosby ở Đại Học Massachusetts Amherts nghiên cứu cách cấu tạo và hoạt động setae khi cắc kè di chuyển. Dùng các mô hình toán học dựa vào luật của lực van der Waals tạo ra bởi sức hút giữa bàn chân và vách tường, so sánh với trọng lực trên thân thể cắc kè, nhóm nghiên cứu của ông thấy rằng có sự liên hệ giữa cấu tạo bàn chân và lực hút giữa bàn chân với vách.
Cắc kè có hệ thống gân khác biệt ở chân. Ở các động vật khác, kể cả con người, gân nối cơ bắp với xương. Còn ở cắc kè, một đầu gân nối với da của bàn chân, đầu gân kia nối với cơ thịt. Khi cắc kè áp ngón chân vào vách, các xoang trong chân trương phồng lên do bơm máu vào, làm bàn chân cứng tạo sức hút về chiều hướng bước tới. Phối hợp giữa mềm nhũn của da và cứng của gân tạo sức hút mạnh lớn gấp bội so với lực rơi của trọng lực, làm cắc kè dính chặt vào tường. Khi cắc kè muốn bước tới, bàn chân uốn cong, dây gân được giản, cơ thịt giảm độ cứng, mất sức hút, chân được tháo gở khỏi tường, nhưng bàn chân bước tới bấu chặt vào tường theo tuần tự.
Dựa trên khảo sát này, TS Al Crosby và đồng nghiệp tạo được loại da Gecskin. Một mảnh Gecskin 10 cm x 10 cm có thể đính 1 vật nặng 318 kg vào trần nhà. Gecskin cấu tạo bởi polyurethane mềm tương tự như cao su, kết hợp với loại vải cứng như Kevlar hay sợi carbon làm dây gân, tương tự như cấu trúc setae của cắc kè.
Tháng 6/2014, một người nặng 100 kg với hai tay hai chân mang thiết bị cấu tạo bởi vật liệu bắt chước từ bàn chân cắc kè đã leo được trên bức tường bằng kính thẳng đứng.
4. BẮT CHƯỚC MÀNG NHỆN
Màng nhện Caerostris darwini kết tạo trên dây tơ treo dài tới 25 m
Ở Madagascar có một loài nhện (Caerostris darwini) nhả ra 7 loài tơ làm mạng nhện. Để làm mạng nhện bắt ngang sông, đầu tiên nhện nhả tơ vào luồng gió và gió đưa qua bên kia sông, đính vào cây, tạo một dây treo. Từ dây treo nhện tạo một mạng lưới nhện giăng ngang sông để bắt côn trùng bay trên mặt nước. Sợi tơ nhện của dây treo được coi là loại sợi sinh học chắc chắn nhất, chắc hơn cả sợi thép khi có cùng đường kính.
Loài nhện có khả năng nhả thành nhiều loại tơ: loại cứng, loại mềm, có nút thắt, loại co giản làm lưới để bắt mồi, có loại dính keo để đính vào trụ cột để xây mạng nhện. Mỗi loại tơ nhện được các nhà khoa học vật liệu nghiên cứu kỷ về lý tính, hóa tính, kiến trúc, thành phần cấu tạo, v.v., mục đích để chế tạo vật liệu xây dựng cho cầu, xe cộ. Vật liệu xây dựng do con người chế tạo không chứa đủ tính chất của tơ nhện, nghĩa là vừa chắc, vừa đàn hồi, vừa mềm dịu. Protein của tơ, nếu nhân tạo được, có thể đúc trong khuôn như plastic, hay tạo thành silicon. Vì là chất hữu cơ, vật liệu sinh học, nên tơ không độc hại môi trường. Protein tơ có thể tạo thành lớp phim ngấm thuốc để ghép vào cơ thể, lớp tơ tan và nhả thuốc vào cơ quan trị bịnh. Ts Davis Kaplan của Đại Học Tufts ở Massachusetts nói “Chúng ta cần một vật liệu sinh học mới, và tơ là vật liệu lý tưởng đó”.
Cấu tạo của sợi tơ treo
Sợi tơ treo của nhện Caerostris darwini cấu tạo bởi các sợi proteins có cấu trúc tinh thể để vừa chắc chắn, không hình dạng, vừa mềm dịu.
Trong y khoa, kết hợp kim loại vào tơ nhện làm tăng độ chắc lên 10 lần, và dùng làm gân nhân tạo trong ngành phẫu thuật.
Cấu tạo sợi tơ nhện (hình trái), cấu tạo sợi tơ nhân tạo bắt chước tơ nhện (hình phải) dùng vận chuyển thuốc trị bịnh trong y khoa
Áp dụng vào công nghiệp thì vô hạn. Vì rất cứng và nhẹ, tơ nhện nhân tạo dùng làm mủ an toàn cho phi công chiến đấu, gân nhân tạo trong phẫu thuật y học, làm dây thừng, v.v.
Hiện tại có nhiều nhà máy sản xuất protein tơ nhện nhân tạo, như AMSilk ở Munich (Đức), Spiber Technology ở Stockhom, Spiber Inc ở Tsuruoka (Nhật)
5. BẮT CHƯỚC LOÀI BƯỚM
Kiểu cách màu lục biến đổi trên cánh bướm Nam Mỹ (trái), quan sát kỹ thì chỉ có một màu (phải)
Cánh bướm có màu theo một kiểu cách riêng của loài bướm không phải do vảy nhỏ tí ti có sắc tố sẳn theo kiểu cách đó, mà do phản chiếu từ cách xắp xếp của vảy. Vì vậy màu sắc và ánh màu cũng biến đổi theo ánh sáng và góc nhìn. Các công ty sản xuất vải kiểu bắc chước kiến trúc vảy của bướm để vải có màu kiểu cách biến đổi theo góc nhìn, bằng cách tráng hàng tá lớp polyester hay nylon cực mỏng, và độ dày của từng lớp tráng, cũng như kiểu cách xắp xếp, làm phản chiếu ánh sáng tạo màu sắc biến đổi. Loại vải này không độc hại vì không có chất nhuộm, màu không bao giờ nhạt hay bay màu, vì màu là do ảo giác từ phản chiếu của ánh sáng.
6. BẮT CHƯỚC LOÀI MỰC
Quân đội Hoa Kỳ thì bắt chước hiện tượng biến đổi màu của loài mực (squid và octopus) theo môi trường chung quanh để tạo áo quần ngụy trang. Năm 2014, nhóm nghiên cứu của University of Illinois at Urbana–Champaign thành công chế tạo được loại vải dựa theo cấu trúc da của loài mực, theo đó màu sắc biến đổi phù hợp với môi trường chung quanh, dành cho ngụy trang trong quân đội.
Bước xa hơn, nhà nghiên cứu Alon Gorodetsky của University of California, Irvine cũng bắt chước cấu trúc da của loài mực để tạo một loại vải áp dụng làm tàng hình với tia hồng ngoại. Ông nghiên cứu với một protein có tên “reflectin”, chứa trong da của loài mực. Xử dụng nhiều loại hóa chất, kích thích bởi dòng điện, và cơ học, ông khám phá và thành công tráng lớp reflectin nhân tạo lên vải, với lớp này mọi tia sáng có nhiều độ dài sóng khác nhau sẽ bị dội ngược, nhất là tia hồng ngoại, vì vậy giúp ngụy trang ban đêm mà địch thủ không thấy được khi dùng ống dòm ban đêm với tia hồng ngoại. Mới đây, vào tháng 2/2015, TS Gorodetsky và cộng sự đã trình diễn loại vải ngụy trang mới này, với ban ngày thì vải có màu của màu cảnh vật chung quanh, còn ban đêm thì tuyệt nhiên địch thủ không nhìn thấy.
7. BẮT CHƯỚC CÁ MẬP
Cá mập Isurus oxyrinchus có thể lội với vận tốc 100 km/giờ. Làm sao nó có thể phóng nhanh như vậy trong nước? Các nhà khoa học nghiên cứu cho thấy da cá mập có cấu tạo khác thường.
Da cá mập cấu tạo bởi vảy hình răng chữ V sắp hàng song song theo chiều nước chảy có mục đích làm giảm sức cản của nước.
Cá mập Isurus oxyrinchus
Cấu trúc da cá mập
Một loại áo bơi lội được hảng Speedo chế tạo bởi một loại da nhân tạo có cấu trúc tương tự như da cá mập Isurus oxyrinchus. Bận áo bơi này, vận tốc bơi gia tăng thêm 7%.
Kỳ tới: Phần 2 – Bắt chước thực vật